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Summary 

This research is concerned with the general multivariate linear model 

from a vector space point of view. That is the usual n x p "data matrix'' 

is treated as a vector thereby permitting the analysis t o  be visualized in the 

same way that it is in the  univariate case .  The difference being that t he  

fundamental building blocks of the  estimation space are p-dimensional sub- 

spaces  instead of the univariate cases ' s  1-dimensional ones. The present 

paper es tabl ishes  th i s  point of view and applies it t o  the problem of linear 

estimation. In doing so we find for example that S. N. Roy's statement of 

the multivariate linear hypothesis is not the most general "estimable" hypo- 

thesis. Work on appropriate t e s t s  of hypothesis is underway. 
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A Geometric Approach to  Multivariate Analysis - 1. Linear Estimation 

0. Introduction. This research is concerned with the general multivariate 

linear model which is treated extensively in  Anderson [ 11 and Roy E 31. The 

principal focus of attention in this  work is on the vector space  or geometrical 

interpretation of l inear unbiased estimates of linear combinations of the para- 

meters in the  model. Such interpretation of the  univariate linear model has  

proved enlightening in the analysis  and theoretical development of univariate 

analysis  of variance,  e.g.  Bose 21, Scheffe [ 41. It is unlikely that any of 

the  resul ts  i n  th i s  paper are new per se, but rather that  the setting is new. 

In univariate analysis  of variance the  geometrical view seems especially 

important when making a postiori inferences from the  data  which are not 

precise enough to justify t h e  specification of a P-value. Such "detective 

work", as Tukey calls it, is greatly enhanced by  being able to  visualize the  

variation due to a certain linear combination of parameters as the squared 

length of the  projection of the observation vector on a certain subspace.  An 

analogous geometric view for the  multivariate case would be  useful and it is 

the object of th i s  work to provide the requisite preliminaries for such a view. 

More work along these  l ines  is in  progress. 
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Minimum variance, unbiased, linear estimates (often called best  estimates) 

of linear combinations of design parameters in the  univariate c a s e  a re  defined by  

certain one dimensional subspaces of the estimation space which is in  turn defined 

by  the design matrix. This result is useful in "visualizing" the  estimates and in  

defining the sums of squares due to linear combinations of the parameters. In 

th i s  paper it is shown that in the  p-variate c a s e  "best" estimates of linear 

combinations of certain parameter vectors are defined by  p-dimensional subspaces 

of the  estimation space which is itself defined by a suitably modified design 

matrix. Then linear combinations of the parameters are considered a s  linear com- 

binations of the components of linear combinations of the  parameter vectors and their  

best  estimates obtained. Predictably, t hese  best  estimates turn out to be  defined by  

certain one dimensional subspaces of the estimation space.  It then follows that the 

fundamental building blocks of the estimation space in the p-variate case are  

certain p-dimensional subspaces - a natural extension of the univariate case .  

Furthermore orthogonal generating sets for these  subspaces a re  readily available from . 

the  design matrix. 

In the  final sections the  straight forward generalizations of the usual resul ts  on 

the normal equations are given together with an appropriate statement of the 

Gauss-Markoff theorem. 

A comment here on notation will prove helpful. In what follows the  vector space 

generated by the  rows (columns) of a matrix A will  be  denoted by V (A) (V (A) ). r C 

Thus, for example, V (A) = V (A'). 
C r 
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1. Multivariate General Linear Model. Le t  x , e . .  , x b e  N independent , -1 -N 

identically distributed, p-dimensional , random vectors with real  coordinates . 
By the assumption that t hese  random vectors obey the general linear model we 

shall  mean that there exists a known , constant N x k (design)'matrix A. , a n  

unknown, constant k x p (parameter) matrix 0 , and a random N x p (error) 

matrix F so that 

\ 
X' -1 

[i; = X = A  0 + F ,  E(F) = 0 .  0 

It is with such a model that both Anderson and Roy a re  concerned in  their 

respective approaches to  estimating 0 and multivariate analysis  of variance. 

We shall  consider a different approach to  this model and for this approach a 

different , but equivalent , formulation of (1.1) is needed. Let  A. = (a. ,); let 
11 

I be  the 1 x p vectors which form the rows of 0 ;  and le t  e' , .. . , e' Yo* ' '  I& -1 -N 

b e  the  1 x p vectors which form the rows of F.  If we let I be  the p x p 

identity matrix , then the assumptions embodied i n  (1.1) can b e  written equivalently 

P 

as 

(1.2) x = 

X -1 

-2 X 

X 
-N 

- 
I 

I 

all Ip a12 IP -  a 1k P 

2 2  I P * * *  a 2k p 21 Ip a a . . 
N1 'p a 1  N2 p ' "  a Nk 'p a 

- 

e 

-N 
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where the  usual  notation for partitioned matrices has  been employed. Makjng 

the obvious identifications we get that (1.2) can be written a s  

e , E ( e ) =  0 .  - E + x -  A - - (1.3) 
Np x 1 Np x kp kp  x 1 Np x 1 

Before proceeding we shal l  define two operators which will enable u s  t o  

move more gracefully between the  formulation of the model in  (1.1) and that 

in (1.2). 

be an m x n real  matrix with row vectors - -- ....-.- -I PI- 
Definition 1.1 (a) Let  A 

a_ m x n - -  

al , . . . , gl,. Define the  "stretch" operator A b_v 
c _- -"-* 

a 

7n 

he an r x s E a 1  m-atrix and define the "insertio_ll" r x s  (b) &t B 

operator 6 (of B into A) by_ -- 

: A  I =  r x s  m x n  (1.5) 0 (B 

a B  11 

a B  m l  

a B ... 
a B ... 
12 

2 2  

a B ... m2 

a 

a 

a B  mn 

where A = (a , .  1. 
m x n  11 

This operator is a form of the direct product defined for example in Wedderburn Et;'] . 
Routine calcutions are sufficient to establish the following bas ic  properties of the 
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"stretch and "insertion" operators. Here A I C  m x n '  Bn x q r x ' s '  

are real matrices of the s ize  indicated and I is the  r x r s x u  r I E  s x u  
D 

identity . 
1 

1 

s x u  (i) ,&D s x u  + E  s x u  1 = A D s  1 + /&E 

(ii) # (A B ) = & ( I  : A  1 /&B 
n x p  p m x n  m x n n x p  

(iii) 0 (Cr - A  1 &m : B  ) =&(CD: AB) s x u  n x q  

A = &(Am x n : I~), 8 (B: A)' = C (BI :A*) m x n  (id 

where for any matrix M ,  M' is its transpose. 

We can now write (1.3) a s  

so that we have an N p  x 1 observation vector 2 = 

matrix A = 0 (I : A o ) ,  a k p  x 1 parameter vector - 1-1 = 2 (0) ,  and an N p  x 1 

error vector 

"insertion" and "stretch" operators we can easi ly  make the  transition from (1.1) t o  

(1.3) and back. 

8 (X), an Np x kp design 

P 
= ,-8 (F). Using these definitions and the  properties of the 

If C' is an s x N p  matrix, then 

E(C' 2) = C' A e 1-1 . (1.7) 

If we further assume that x has  a finite p x p variance-covariance matrix 

Co , then the variance-covariance matrix of x (denoted by VAR 2) is given 

-1 

by an N p  x N p  real ,  symmetric,positive definite matrix C defined by 
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2 = VAR = 0 ( C g :  IN) 

and 

The general linear model for the vectors -l,. x . . , sN has  now been 

put in  a form which encourages the  use  of vector space ideas  in  the analysis  

of th i s  model. 

2 .  Estimable linear functions of p1 , . . . , i.& . In multivariate analysis  of 

variance one often wishes t o  test hypotheses of the form L 0 = 0 where 

L is a g x k matrix. Thus estimation of L 0 might naturally arise.  

Note that L 0 is simply g l inear combinations of Q l , .  . . , Qk. Thus 

we shal l  consider the  problem of finding an unbiased estimate of a linear 

combination 

0 

0 0 

0 

. We must find out which, 1 '  R Z l . . . I  'k for arbitary real  numbers j 

i f  any, such l inear combinations have unbiased estimates : and i f  an 

unbiased estimate ex is t s ,  what it is. 

Let  the p x kp matrix L' be defined by 

I ,..., jk 1 ~ 1  = Q ( I ~ :  a ' )  P u 

L ' = ( j  I , 
1 P  

for c a '  = ( j1 , .. . , & )  and note that 
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In our search for unbiased estimates of L' - LL we shal l  restrict our attention 

t o  linear functions of x. Thus we only consider functions of the form C' 3 

where C is  an N p  x p real  matrix. 

An m x 1 vector will be  said t o  be estimable with 
-I- - __ 1- - - - _-_ - _. . 

Definition 2 e 1 

respect t o  x i f  - there -- exists --- - a linear __ function -1-1 of x which i s  an unbiasz_d 

estimate ____ - of 2 . 
- 

Actually when considering L' 

linear function of x in question. 

we  can be more specific about the  

The linear function L' l - ~  is estimable i f  and _ _  only i f  there . "  _ _  - __ - ---__I- 

Lemma 2.1 

c so that E(C' z) = L' I.I. for C defined .~ 1'"' N . . - _.__ -- exists N real  numbers c __ _ _  ___ __- 

(2 .3)  C' = [ c  I , c I I . . .  c I 1 = @ ( I p : c ' ) .  1 P  2 P  N P  

Proof: A general linear function of x appropriate for estimating L'w would 

b e  C'  x for C an N p  x p matrix. Requiring such an  estimate t o  be unbiased 

means that C' A = L ' .  Routine considerations of th i s  equation show that one need 

only consider C of the  form o(Ip: c) for c an N x 1 real vector. 

- 

Since C '  for C a s  in (2.3)  is simply a linear combination of 

-+ I viz.  c x + c x + . . + cN -c I the  l emma is 1 1  2 2  3 1 ' x 2 ' - * '  

both expected and welcome. From lemma 2.1 we see that the following 

theorem is true. 
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Theorem 2 -1 A necessary and sufficient condition for L' & t o  be 

estimable _ _  - is for ( j 

of A. 

linear combination of 6 ( I  : & I l  ) I  6 ( I  : at2 ) I  . . . I 6 ( Ip : ab ) f o r  

j ) t o  be a l inear combination of the rows 1 " " " '  k 

Or in terms of (1.2) L' IJ. is  estimable _ - -  . i f  and -. ~ only i f  L' i s  a 
.I__ - - -  

P P -- . --- -_ 

0' a' t he  rows of A -N - - "; I 0 * / 

Proof: 

e x i s t a n c e o f a r e a l v e c t o r  c s o t h a t  O ( I  : G I )  @ ( I  : A O ) = & ( I  : a ' )  

which impl ies  c' A = j' . 

From the lemma we have that estimability is equivalent t o  t h e  

P P P -  

0 -  

Notice that the rows of a matrix of the form 

aq 
a I I = @ ( I  (2.4)  [ a  I a2  I p , . . . /  a ' )  for a ' =  ( a l J . . . J  

P '  - 1 P  q P  

form an orthogonal s,et of qp-dimensional real vectors which generate 

KIP a p-dimensional subspace of t h e  qp-dimensional real  vector space R . 
Similarly for t he  column vectors of the transpose of the  matrix in (2  e 4) .  

Thus we make the following definition. 

Definition 2 . 2  - If 3 is _ _  a q x 1 --- real  _II vector, t_hen-we-shall cal l  

( I  : 2) 2 p-dimensional orthogokal generating set in Rqp. The ve-ctor 
P 

a will be  called the  defining vector of 0 ( I  : a) .  When the  dimens!-ons 

are understood from context we  shal l  simply use  -~ the  abbreviation , -. -- 0.  g .  s .  for - 

an orthogonal generating set. We I - shall  I-.- speak - -  of submatrices _-- I -._I of -. t he  - form of 

(2.4)  I which - form --_I - rows (columns) of a matrix as - -  row (column) p-dimensional 

0 .g . s .  in R ~ ' .  

P - _  

~- I - - 

__ ----_ I 

- 



-7 - 

We shal l  view a p-dimensional 0 .  g.  s e in Rqp much as we do a 

1-dimensional vector in R e It is clear that  for p = 1 an 0.g. s .  is a 

vector which in turn is a generating set for a 1-dimensional subspace of 

Rqe  Definitions of orthogonality, independence and equivalence of 0.g. s. 

are similar t o  those for vectors and are formally stated below. In order t o  

avoid awkward notation the  plural of 0 .  g. s. will also be written 0.g.  s .  

and the number inferred from context. 

q 

Definition 2 e 3 (a) The __ vector space generated by a I set 1- of r 0 .  g.  s. is - 

the space generated by the rp qp-dimensional vectors which make - - _ _  up - the __ - - - __ __ _ _  
rows of The r 0.g.s. _ _ _  

(b) Two 0.g. s. will be  said t o  be equivalent i f  they ._  generate .. the  - I same - ~ - "  
I . .. " 

subspace of Rqpe  , 

(c) Two 0.g. s. will  b e  said t o  be orthogonal i f  the  corresponding _-..  - _ _  - ,_ 

q-dimensional . _,_..,_ defining .... ,~. ,. vectors .,. ... ...., are . orthogonal. .._.,.XI.._ , _(_- ".... A set of 0. g. -..l..-.I_.._I_ s. will __ be called I ~ ..,...-.. 

an orthogonal set if  every two distinct 0.  g. s . are orthoggnorl.. __ . 

(d) A set of 0.g.  s. will  b e  said t o  be linearly independent i f  the corresponding - " *  I . ~ 
" _  - .  - --  " .  - - -  -- _-- _ _  - ___ _ _  __ _ _  

set of defining vectors is linearly independent. 

Lemma 2 2 

-I_____-__"_ -_-1._-_11 ~- . - . _-_._ I 

If V is a subspace of Rqp generated by k p-dimensional 0.g. s. _ _  - _ _ _ _  ~ - _- _ _  I . 

( Ip : gl ) I . . e I o( Ip : ak) then the space generated by a p-dimensional 0 .  g. s .  "".__ i- - ~ _ _  e x  

& ( I  : c )  is contained in  V if  and only i f  there exist real numbers d l ~ - - . ~  dk -.̂ IIx--l_ _. I-.-______ P -  

such that --_ 

, 
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Proof : 

orthogonal complement t o  the space generated by (dl  * .  . , dk } ; and the 

fact that i f  2, b are  orthogonal vectors in  Rq , then ma 

The sufficiency is clear. The necessi ty  follows by considering the 

0 ( I p :  2’) and 

and n+ arbitrary 

-1 

8 ( I  : 4’ ) are orthogonal vectors in  Rqp for m P -1 

p x 1 vectors. 

Not e : This means that i f  the subspace generated by an 0. g. s. C is in  V , 

for A , =  & ( I  : a . )  i = l ,  ...# k. 
+ dk A?c 1 P -1 

C = d  A + d  A +... 1 1  2 2  

In this  context we can  restate  the result of Theorem 2.1 as  L’,J- is 

estimable i f  and only i f  L’ generates a subspace of Rkp contained in the  sub- 

space generated by the row p-dimensional os g . s. 

V (L) C V (A). 
C r 

The subspace of Rkp defined by 
_- _ _  __ __ ___ __ __ ---- _. 

Definition 2 4 

in R ~ P  of A, i.e. 

the row p-dimens ional o e g s . - ,_ _I - - -  - - -- -.-_ 
of A will be called the parameter space for the model (1.2) and denoted by V (A). r - -..-_ - .--....l..--l_l---.-_l-l-... _._-.I_._ .. . . . . _.-..”.”..--..I_.. ..__. -I.”.^”c.- .. .. . ._ _. ~ . .-. . 

Notice that the  notational convention established in  the introduction and definition - _ -  - --. ” <_..“...+ . I- 

2 .3  (a) dictate this  notation. 

If the  rank of A is s i  k < N ,  the rank of A is s p  and the - -_. - -. 0 -  _ _  - __  I- -”. - Lemma 2 . 3  

dimension of Vr(A) - is  _” sp.  

Proof: The result  follows immediately from the definitions of A and V (A). 

-- - - -  

r 

We have thus determined which linear functions ,t& 1 : .  * / E k  have linear 

unbiased estimates.  We  shal l  have more t o  s a y  about t hese  estimates in section 4.  

, 
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3. Estimable functions of the  components a & . In section 2 we concentrated 

. This led t o  investigation of certain on linear functions of -1' I-1 M2"" 

p-dimensional subspaces of the parameter space,  V (A). In this  section we 

shall  be interested i n  certain 1-dimensional subspaces of V (A) as we shal l  

b e  interested in estimating linear functions of the  (scalar) components of 

as opposed to the (vector) components 

'k 

r 

r 

&, e.. , &k . 
Our study in  section 2 was motivated by the  consideration of the  hypothesis 

L 

form mentioned in  this  section is 

0 = 0. A more general hypothesis which suggests estimation problems of the 0 

where rank of B (rk B) is g rk A and rk M = u p .  0 

If b'. = (bil ,.. . , b. ) is ith row of B and m 
-1 ik -j 

(3.1) 

is jth column of M ,  then 

can be stated as follows 

where Q is a matrix whose gu rows are given (in any order)by 

for i = 1 . . . g ,  j = 1, -.. , u . We have the  following l e m m a .  

Lemma 3.1 If Q is defined as  in  (3.3) and B and M are  defined as in  (3.1), 

(3.4) rkQ = (rk B)(rk M). 

i -- -- - -̂ I._ - 
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Proof: The result follows from a straight forward analysis  of the 

g U n 

= 0 using t h e  fact  that g = 9: b ) .  i j  -i equation C Y i j  gij - 
i = l  j = 1  

It should be noted that i f  Q is an arbitrary gu x kp matrix of rank gu, 

then there do not necessar i ly  exis t  matrices B and M so that (3.2) implies (3.1). 

L e t  u s  consider an arbitrary row of Q ,  q' , and investigate the  problem of - i j  

finding a l inear unbiased estimate of q' I-1 - a l inear function of the components 

of I-1 . For convenience we consider -11 q' .& = Now 

- i j  - 

- 

where LI1 is the 0 .  g. s. given by 0 (Ip: btl). Thus q' 1-1 is a linear -11 - 
function of the components of a linear function of - 1 J " ' J  p 

N If L'; - I-1 is estimable,  there ex is t s  a p-dimensional 0 .g . s .  C1 in  R p 

so that E(CI1 x) = Lrl  ". Thus E & I 1  CI1 x) = -1 m ' LI1 g , i.e. mIl Ct1 x 
is a linear unbiased estimate of q' - 11 -1 2.  Note that m' C r l  is a 1 x N p  

vector so that  

Theorem 3.1 

p-dimensional - 

m' Ct1 x is of the form c' x and thus q' .& is estimable. -1 - 11 

L e t  be a p x 1 non-zero real  vector and le t  L be a _ _  ------l__l.--l___ ._l__l.I__^__ - _ - - -  - 

0 .  g. s. in  Rkp . Then a necessary and sufficient condition for 
. -- - I _  --.- - __"__^_ --.- -- 

rn' L' t o  b e  estimable is that L' & b e  estimable. Furthermore i f  L' is 

estimable, then there ex is t s  a - p-dimensional .. 0.g .  s. 1 "  in RNp , -- say C , such I that  

..* - - ---- -ll--.-ll _ _  - - -- - -- . -1_-1- - - 

I_ c-_ - - e- 

m' C' x is a l inear unbiased estimate of m' L' IJ-. 
- - s---^ - - -  ~ - I - - 
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Proof: The sufficiency is clear.  For the necessi ty ,  i f  m' L' j& is 

estimable, then there is an  Np x 1 real  vector c so that c' x is an 

unbiased estimate of 2' L' j&. This resul ts  in  c' A =E' L' ; and i f  b 

is such that L = 0 (Ip: IS), it follows that for 

V (Ao). Thus Vc (L) 

estimable i f  and only i f  the  ith row of B belongs to V (A ). 

# 0 ,b is i n  the  space 

Vr(A) and the proof is complete. Thus - q' i j  - 1-1 is r 

r O  

Notice that 2' L' generates a 1-dimensional subspace of V (L) ; 
C 

in fact, every 1-dimensional subspace of V (L) is generated by 2' L' for 
C 

some vector a. Furthermore i f  rk A = kp, then for every 0 .  g.  s .  L ,  L' 

is estimable : and then every a' L' g h a s  a linear unbiased estimate. 

Recall that rk A = kp implies dimension of V (A) (dim V (A) ) is kp. More r r 

generally suppose d'im V (A) = sp ,  s 

s independent p-dimensional 0.g. s .  in Rkp each generating a subspace of 

k and suppose L 1 ,  L 2 , . . . ,  L are  r S 

Vr(A). Then any vector in Vr(A) can  be  written as 

for a unique choice of the  s p x 1 vectors -1'"" m ms * 

Thus we have the following theorem. 

Theorem 3 - 2  If a E V (A), there exists a vector c E RNp such that 2' x --~----~. ,.- -. --.--- ""_ I _" ~ - -  .- r -. 

is a linear unbiased estimate of .&' LL 

as in (3 - 6 ) ,  a choice for c would be 

Furthermore since can b e  written --. -_--.._IC--r.. II_ _XI.. _-. . . - ---__ ___,._. -., ... " . . ...... _. . 

----- 
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4. 

S 
(3 * 7) - ci = r q  Cll + mI2 Cl2 + ... + Els C' 

where C is a p-dimensional 0 .  g. s. in RNp such that E(CIi x) = L' I-L 
- i -  

for i = l ,  ..., s. 

i - - ____ __l_l_- 

- 

Let u s  now consider the hypothesis (3.1) or equivalently (3.2) i n  light 

of theorems 3.1 and 3.2. The hypothesis (3.2) requires that in  the estimable 

case certain one dimension 

more these one dimensional 

0 .g .s .  L. Notice that all 

subspaces of V (A) be orthogonal to rJ- . Further-, 

spaces  are constrained to lie in V (L) for certain 

one dimensional subspaces in  V (A) are not of 

r 

C 

r 

this  form, e.g.  i f  k = p = 2 ,  ( l , O , O , l )  does  not lie in  a subspace of V (L) 

for any 0.g.s .  L. Theorem 3.2 shows that  more general linear hypotheses 

can b e  considered without sacrificing estimability. In  fact, there is a one t o  

one correspondence between linear, estimable hypotheses and the one dim- 

ensional subspaces of V (A). 

C 

r 

Notice the  relationship between the vector & i n  the parameter space 

Vr(A) as given in  (3.6) and its "estimate" as given in  (3.7). In  section 4 

w e  shal l  make this  relationship even more specific. 

- The fundamental theorem of linear estimation. In this  section we s h a l l  

consider the problem of finding the "best" 

function of iJ- kk ,  i.e. finding the "best" estimate of L' IJ- for L ,  

a p-dimensional 0.g. s .  in  Rkp such that V (L) c: Vr(A). We now state a 

lemma which will  b e  useful in developing the idea of "best" estimate. 

estimate of an  estimable linear 

-1 ' * .*I 

C 
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Lemma 4,1 &eJ C be - __ a p-dimensional - - - __ 0.g. ____ s in RNp and - let - I- 

be  t he  N x 1 defining -- ~ -- _ _  vector I for _- C. Then 

(4.1) 

___ 

VAR (C' x) = C' C eo = &' e) E o  . ', 
We shal l  call the non-negative number e' associated with the  0.g. s. C - - - ___I_ -____ ----__- *___... I 

t he  covariance coefficient of C' x. 
__.__I __- 

Proof: V A R ( C ~ Z ) = C ~ C C  = & ( I  : c i )  & ( T ; ~ : I )  & ( ~ ~ : e )  
P -  P 

Thus we make the following definition. 

Definition 4-1 A bes t  0.g. s. estimate of L' wi l l  be  an estimate of 
_II -.--I-- I-1 -------- -_ Î 

NP the  form C' 2 for I_ C a p-dimensional 0 .g .s .  in R 

- 
------__. --,-_----- -. --I_ 

which sat isf ies :  -- - 

(i) E(C' x) = L' I-1 
c 

(ii) The covariance coefficient of C '  x is at mos t  that  of 
---1_1__-.-1. .- -".-_1_-."" -- .._I_ ~ 

any other 0.g. s. estimate satisfying (i). 
-l.*.l--..l.l..-.l."l - _.-I *.-_. .. . . ~.. 1. _. ... ., .I 

In other words a bes t  0.  g. s. estimate of a l inear combination of I-1 . . e 

-1 -k 
I-1 is 

a l inear function of -lJ x * .  . sN which is unbiased and has  minimum covariance 

coefficient e 

We sha l l  now set about showing that  there is a unique bes t  0 .g .s .  

estimate for an estimable 

observation space  RNp into two orthogonal subspaces e 

L' 1-1 Toward th i s  end we shal l  decompose the  - 
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Definition 4 .2  L e t  V (A) be . . the  subspace .. -.. _- of RNp generated . . . - _. - - . , _. by - I - the . . k 

column p-dimensional 0 . g .  s. of A. We shall  cal l  V (A) the estimation .. ... ~ ..-.-- _ I r .  

space.  Let  V(E) be the subspace of RNp generated by { C : E(C' x) = 0,  

C a p-dimensional 0 .  g. s. in RNp 1 . We shall  call V(E) the .. . __I error I---- I__.-_p--_. space.  

C 

C -.._Î __ ". _.._ ___ ______ . .. . . ..I.-_ 

_. -_..~".~_.___IC._.XI._ .", _ _  . . - ̂ _._ 

. .____ I -.I._̂  .I__. _ _  -. I.. 

We shal l  abuse the notation by saying an 0 . g . s .  belongs to  Vc(A), 

for example , when we mean the  subspace generated by the 0.  g. s .  is 

contained in  V (A). 
C 

By using the fact that the defining vectors of the  0 .  g. s. which generate 

N Vc(A) and V(E) generate s and N - s dimensional subspaces of R 

respectively and that R N is the direct sum of these  subspaces we can  

establ ish the next lemma. This lemma m a y  a l so  be proven by considering the 

N-dimensional vectoi  space  of 0.g. s. over the field consisting of elements 

of the form a1 , a E R. Here s = rk A 0' P 

(i) The estimation space V (A) is orthogonal to the error 
-1_-11- --*.-I -.-"-I-_ C ____ - - Lemma 4 .2  

space  V(E) and RNp is the  direct sum of V (A) and - -..- V(E). 
C ~ - -  _"-l.--̂ l-*.--"l -. I- I 

(ii) If rk A = s p  I kp, then dimension V (A) = s p  and dimension 

V(E) = (N - S)P 

-.--^ ~,.~.. _- C -I- - 

(iv) Given a p-dimensional 0.g. s. D in RNp there exist unique 
___I -̂ --_-I _.-. _. ."" .- .... . . ,~"  - -----.I___ -_-_-_. 

p-dimensional 0.g.  s .  C and F so that D = C + F,  C belongs to 

Vc(A), F belongs to V(E), and V (C) is orthogonal to V (F).  

-__- -__I-- __-___ _ - ^ _ -  - ~ - 

c - "  ..<.-. ~ c 
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W e  are  now in a position to state a theorem which locates the  unique 

bes t  0.g. s .  estimate of an estimable l inear combination of I-I. 
-1"'" -k 

i n  t he  space V (A). 

I-1 

C 

Theorem 4 e 1 (Fundamental Theorem of Linear Estimation). 

& then there exists If L' I-1 is an estimable l inear function of I-1 

a unique 0.g. s .  C in  V (A) such that C' 3 is the  bes t  0 .g . s .  estimate 

~ ____._.____II___.______II.__.I_______._, -1"'"' k .XI__._.._l___ _ _  ~ 

- - 

__I__ I -__-_-. .-.-_. ___._ .--_ ... - -I- --...-I. .... C - 

Proof: 

that  E(D' x) = L' & e By lemma 4 e 2 (iv) I there exist unique 0 .  g. s .  C in  V (A) 

and F in V(E) such that D = C + F. Then s ince EC' x = L' & and VAR(D'x) = 

Since L' 1. is estimable,  there exists an 0 .g .  s. D in RNp so 

C 

(C' + F ' )  (C + F) Zo , = C' C Zo 3. F' F C 2 VAR(C'x), it is clear that  C'  x is t h e  
0 

unique bes t  0 .  g. s .  estimate of L' . 

Corollary 4.1.1 

there exists a p-dimensional 0 .g .  s .  i n  Rkp, Q ,  

If L' CJ- is an estimable l inear function of -1'."/ i-1 !Lk : - _______I_-_ __ -. --.-...--.----- 1 

so that Q '  A' x is the __ -_-____-. ---___-_* . --_ _. 

bes t  0 .g .s .  estimate of L' IJ- . -_ II_ -.-,-----..- .....,""_ ". 

Proof: Since C is in  V (A) I l emma 2 . 2  implies that  there exist real  
C 

s o t h a t  C = q  A + ... + qk % where A. are the  1 1  1 
numbers q 1 ' " " '  qk 

- q ' =  (41""' qk) .  

column 0.g.  s. of A. The result  follows by defining Q = @ (I : g) for 
P 
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Since the idea of a bes t  estimate of a real parameter is usually associated 

with minimum variance, l inear,  unbiased estimates , we s ta te  the following 

definition generalizing th i s  idea t o  parameter vectors.  

Definition 4 .3  A best  estimate of an m x 1 vector g- based . on ---. an M x 1 __ . 
I -I -_--_I .--- 

observation vector will be ̂ -  any - linear function _ -  -., of x which is munbiassd.-and -~ 

whose components have minimum variance. 
I ---- __ ll.-.-l_lll_ll_l-ll ~ .-. 

Now we have t h e  following corollary to  Theorem 4.1 . 

Corollary 4.1.2 The best  0.g. s .  estimate of an  estimable l inear function 
____. --------.------ 

L' E is t h e  best  estimate of L' & . 
.-.._ ___. 

Notice that in general the condition of having minimum covariance coefficient 

is stronger than that of having minimum component variance in that the  former 

places constraints on the covariances while the la t ter  does not. 

The case  of linear functions of the components of IJ- can now be viewed in 

the  l ight of the decomposition of RNp , and the following improvement of theorem 

3 2 can be obtained. 

Theorem 4 . 2  If j E: V (A), there ex is t s  a unique vector c E V (A) such that -__ .-- - r C - 

Var &' E )  is less than the variance of any other linear function (ii) 

of which sat isf ies  (i). 

~ .._ -̂  - - -. --.... - - _- - - -  .___-.--.-- .__"_ 

- ------..-" ,..-.- 
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5. 

C } is a set of orthogonal p-dimensional 0.g. s .  s . ,.____,._,._.l I_. .- ....-_ ..,~ -.--. ".~. ,.,-_. _.._ -...-,-...---..-.. "- .-___.--. 1 ' " " '  Furthermore if  { C 

which generate V (A) and { L 

p-dimensional 0 .g . s .  in  R I i .e.  E(C'. x) = L', IJ- i = 1, I s ,  then 
----.-----"..w-",.. 1 1 I 

---- ____..- ^-.. ll"._l. ,. 

L } is the corresponding set of __-__----. ~-- - - , . - - . - * - - . - -  1'"' S ... . -- c 
kP 

(4.2) c ' = m '  C' + = I 2  Ct2 + ... + m '  C' 
1 1  - s  s - 

where R '  = m' L' + ... + m' L' . - 1 1  - s  s 

Proof: Using the  notation of the  theorem define p-dimensional 0.g. s. 

F1 ,  e 0 ,  FN - 

set of 0.g. s. which generates RNp . Notice that  I F  1' 0 I FN - } ' generates 

s o t h a t  { C l , . D . l C  I F 1 l . . . ' F N - s  1 is anorthogonal 
S 

L } generates V (A). Thus s ince 1'"' S r V(E).  It is easy  to  show that  { L 

N p  so that  E x = a' g .  Furthermore R E V (A) there exists a d E R 
CI r - 

so that  there exists unique p x 1 vectors m , . . . I gs I p1 I . . . I n -1 -N - S '  

d' = m' C'  +...+ m ' s C ' s + n '  F' +...+ n' F' -1 1 -1 1 - N - s  N - s  - 

Let  c' = m' C'  +. . . + m' C' and the  result  follows from the  orthogonality of -1 1 - s  s 

Vc(A) and V(E) 

The "variance" 

develop resul ts  

and l emma 4.2 (iii) e 

--- of the  bes t  estimate a E. In th i s  section we shal l  

which will  enable u s  to calculate  t he  variance-covariance 

matrix of the  bes t  estimate of an estimable l inear function L' E. We shal l  

first need to continue the  investigation of the  structure of the  bes t  estimate 

begun in corollary 4.1.1. 
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Recall that  we have shown that there exists a unique 0. g. s. C in 

V (A) so that C' x is  the  best  estimate of L' IJ- and that (corollary 4.1.1) 

there is a p-dimensional 0.g.s. in Rkp , Q, so that C' = Q' A' .  Thus 

(5.1) Q' A' A E  = E(Q' A' x) = L' E , E, 

which means that Q must sat isfy 

C 

Consistency of (5.2)  follows from the fact that the estimability of L' 

implies L =A' B for B some p-dimensional 0.g.s. in  RNp so that 

(5 .2 )  is equivalent t o  

(5 .3)  A' A Q = A' B 

and the following Theorem (Bose's notes p. 52A) applied to  the ''column 

equations" in (5 .3 )  

Theorem 5.1 The equations 
-I . ."- - r ..x ~ ---- 

A' A q  = A ' b  - 

for q have a solution and A q is uniquely determined, 

However Theorem 5.1 gives u s  more than just  consistency of (5 .2 ) .  For 

suppose li. is a solution of 

. ~ ~ _-_-. -<.*.,.I^..INU .Y.. - ____-__-- -- ----- - 

A 
- 
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(5.4) A' A = A' x - 
then bes t  estimate of L' I-L is given by - 

A (5.5) Q ' A '  - x = Q' A' A t  = L' I-1 - 
Thus we have the  following theorem. 

A Theorem 5.2 If L' iL is estimable,  the best  estimate of L' is L' I-1 

where u. is any solution of (5.4),  If a '  u. is estimable,  the bes t  estimate 

- - -__ - - I_ I I.-- -------~_ Î - -  - 
f i  

1-1 - - - -- - *I_"_L ._ c 
-- - 

A 
of j '  is - -  1' IL e -- / -  

A Although (5.4) may not have a unique solution, 

matter which solution, I-1, of (5,4) is used s ince L' I-L = Q' A' A and by 

L' c1 will  be  unique no 
c 

A I\ 

- - - 
h 

theorem 5.1 A & is uniquely determined. The equations (5.4) are called the  

normal equations. If we  introduce the conditional inverse of A' A into the  

discussion we get that  a solution of (5.4) is given by 

(5.6) 

for (A'A)* satisfying (A'A) (A'A)* (A'A) = A ' A ,  i.e. (A'A)* is a conditional 

inverse of A'A e 

,$ = (A'A)* A' x 
a 

We are now in a position t o  state t h e  following result .  

Theorem 5 3 If L' y is estimable the  variance covariance matrix of the  

bes t  estimate of L', & is given by 

- - ___.._-.-- -.- -_- -,". mA*-*-,_.,-.-. .1̂ . . _ _ I - - . ~ * I . Y _ I x x _ _ - . . + y ~  --" h i.. . 
',. 

I 
-I_--- 
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6. 

C } is a set of orthogonal p-dimensional 1 ' " " '  S 
Furthermore i f  (C 

0. g. s .  which generate V C (A) and { L 

set of p-dimensional 0.g. s .  in Rkp then we have the  following corollary, 

e e Ls } is the corresponding 

Corollary 5 3 

a '  is given by 

lf a E Vr(A) then the variance of t he  best  esJl:gg;LoL - 
----.. - 

S 

m' Q; A' A Q .  Zo zi -i 1 
= c  

i = l  

S 

= c  -i m' L'. 1 Qi So q 
i = l  

S = c  -i R '  Zi Eti Ei 
i = l  

for 1' = m' L' +... + =Is L' 

0 .g .s .  Li 

and - i  a Ai the defining vectors of 
L_ -1 1 s __ I.IxII- - -  - 

Qi i = 1,. .. s. Here Qi sat isf ies  A' A Q = L e 

i i - - - 

- The Gauss-Markoff Theorem. For completeness we mention the Gauss-Markoff 

Theorem even though it contains nothing new in th i s  case. 

f i  
(Gauss-Markoff). Suppose is a vector which minimizes 

_I___- 
Theorem 6 , 1  - 

& - A E)' (Ir - A JL) 

mean. Then L' CJ- is the bes t  estimate of L' 

is best  estimate of 1' 

i. e. t he  squared length of the deviation of from - - __ its 
----_-I_ -I__ __ _^-______ ___-- _ _  

A f i  
for L' E estimable and 1' IJ- 

I __I_- -.-- _ _  --- - _-____I I - 

for 1 E V (A). r -_-_ _-__ - 



- 21- a ^  

7 .  A c  k now1 e d g m  e n t . 
of the points of view expressed by Professor R .  C .  Bose and the late Professor 
S .  N .  Roy. Also discussions with Professors D .  S.  Burdick and W.  M. 0' Fallon 
here at  Duke have been invaluable. 

The author here acknowledges the help and inspiration 
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